$8 / 11 / 23$
MATNIOSOA Tuterial
Cunauncements:

- Midtem 2:15/11. Tutorial neex weeh will be on Friddy. 17/11.

Mielterm Review
Defni. $\left\{x_{n}\right\}$ converges to $x \in \mathbb{R}$ if $\forall \varepsilon>0, \exists N(\varepsilon) \in N$ s.t if $n \geq N,\left|x_{n}-x\right|<\varepsilon$.

- $\left\{x_{n}\right\}$ is moreaing if $x_{n} \leqslant x_{n+1}$ forall $n \in \mathbb{N}$.
decrecing if $x_{n} \geqslant x_{n+1}$ for all $n \in \mathbb{N}$
monotone if it is moreasing or decreasing.
- Let $\left\{x_{n}\right\}$ be a sequence and $n_{1}<n_{2}<\cdots<n_{k}<\ldots$ be a sequence \&natual nubers then the sequence given by $\left(x_{n_{1}}, x_{n_{2}}, \ldots, x_{n_{k}}, \ldots\right)$ is a subsequence of $\left\{x_{n}\right\}$.

$$
\begin{aligned}
& \left\{x_{n_{n}}\right\} \text {. } \\
& \left\{x_{n}\right\}: f: N \rightarrow \mathbb{R}: \quad f(1)=x_{1} \quad \text { Subsequence is } f \circ g: N \rightarrow \mathbb{R} \\
& f(2)=x_{2} \quad \text { where } g: N \rightarrow N \text { and is a stractly moreaing } \\
& f_{n}^{\prime} . g(1)=n_{1}, g(2)=n_{2}, \ldots
\end{aligned}
$$

$$
\begin{aligned}
& f \circ g(1)=f\left(n_{1}\right)=x_{n_{1}} \\
& f \circ g(2)=f\left(n_{2}\right)=x_{n_{2}} \\
& f \circ g(k)=f\left(n_{n}\right)=x_{n_{k}}
\end{aligned}
$$

- Gien a sequunce $\left\{x_{n}\right\}, \lim _{n \rightarrow \infty}\left(x_{n}\right)=\inf _{n \geqslant 0} \operatorname{rep}_{k \geqslant n} x_{k}$
- $\left\{x_{n}\right\}$ is condy if $\forall \varepsilon>0, \exists N(\varepsilon) \in \mathbb{N}$ s.t. if $m, n \geqslant N,\left|x_{m}-x_{n}\right|<\varepsilon$

Thus:

- Bolzano-Weierstross; $a_{m y}$ hounded sequence has convergent subsequence.
- Monotonce Convergence Thi: a monstore seguence converges iff it is bounded.
- Cavely Cnterion: a sequence converges if it is Ccuily.
- If $\left\{x_{n}\right\}$ converges to x, then all crobsequences comerge os x.
- $\left\{x_{n}\right\}$ dses nitconerge/is divergent if eithler
$-\left\{x_{n}\right\}$ is umbondeel
$-\left\{x_{n}\right\}$ has tws subsequences $\left\{x_{n_{k}}\right\},\left\{x_{m_{k}}\right\}$ where $\lim _{k \rightarrow \infty} x_{n_{k}} \neq \lim _{k \rightarrow \infty} r_{m_{k}}$
- Equivalent deflus of linap.

Squeeze Thi.
Q1: Show theat if $\left\{x_{n}\right\}$ is unbounded, then \exists subsequence $\left\{x_{n_{k}}\right\}$ s.t. $\lim _{k \rightarrow \infty} \frac{1}{x_{n_{k}}}=0$
Pf: $\left\{x_{n}\right\}$ is nulloonded, so $\forall M \in \mathbb{R}, \exists n \in \mathbb{N} . t_{1}\left|x_{n}\right|>M_{1}$
So for each $K \in \mathbb{N}$, choose n_{k} s.t. $\left|x_{n_{k}}\right|>K, \quad n_{k}>n_{k-1}$.
So consider the sequecuce $\left\{\frac{1}{x_{n_{k}}}\right\}$, wTS $\lim _{k \rightarrow \infty} \frac{1}{x_{k_{n}}}=0$.
let $\varepsilon>0$. By $A P, \exists K \in N$ s.t. $\frac{1}{K}<\varepsilon$. So $\exists n_{k}$ s.t. if $n_{m} \geq n_{k}$,

$$
\left|\frac{1}{x_{n_{m}}}\right| \leqslant\left|\frac{1}{x_{n_{n}}}\right| \leqslant \frac{1}{k}<\varepsilon
$$

Q2. Show theit $x_{n}=\sqrt{n}$ satisfies $\lim _{n \rightarrow \infty}\left|x_{n+1}-x_{n}\right|=0$ but it is not Cancly.
Pf. $\left\{x_{n}\right\}$ is not Candy because it is not bonded and therefore diverges:
let $M \in R$. Then by $A P$ of $N, \exists N \geqslant M^{2}$. So $\left|K_{N}\right|=|\sqrt{N}| \geqslant M$,

$$
\left|x_{n-1}-x_{n}\right|=|\sqrt{n+1}-\sqrt{n}|=\left|\frac{1}{\mid n+1}+\sqrt{n}\right| \rightarrow 0 \text { ar } n \rightarrow \infty \text { by AP }
$$

Observe: $\sqrt{n+1}-\sqrt{n}=\frac{\sqrt{n+1}(\sqrt{n+1}+\sqrt{n})}{\sqrt{n+1}+\sqrt{n}}-\frac{\sqrt{n}(\sqrt{n+1}+\sqrt{n})}{\sqrt{n+1}+\sqrt{n}}$

$$
=\frac{(\sqrt{n+1})^{2}-(\sqrt{n})^{2}}{\sqrt{n+1}+\sqrt{n}}=\frac{1}{\sqrt{n k-1}+\sqrt{n}}
$$

